

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

LABORATORY REPORT

May 4, 2015

Andy Limmer Weaver Boos Consultants 1604 Eastport Plaza Drive, Suite 104 Collinsville, IL 62234

RE: Cottonwood Hills RDF Flare Sampling

Dear Andy:

Enclosed are the results of the samples submitted to our laboratory on April 22, 2015. For your reference, these analyses have been assigned our service request number P1501622.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

By Sue Anderson at 2:19 pm, May 04, 2015

Sue Anderson Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

Client: Weaver Boos Consultants

Project: Cottonwood Hills RDF Flare Sampling

Service Request No: P1501622

CASE NARRATIVE

The samples were received intact under chain of custody on April 22, 2015 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

BTU and CHONS Analysis

The results for BTU and CHONS were generated according to ASTM D 3588-98. The following analyses were performed and used to calculate the BTU and CHONS results. This method is not included on the laboratory's NELAP, DoD-ELAP, or AIHA-LAP scope of accreditation.

C2 through C6 Hydrocarbon Analysis

The samples were analyzed according to modified EPA Method TO-3 for C2 through >C6 hydrocarbons using a gas chromatograph equipped with a flame ionization detector (FID). This method is not included on the laboratory's NELAP or AIHA-LAP scope of accreditation.

Fixed Gases Analysis

The samples were also analyzed for fixed gases (hydrogen, oxygen/argon, nitrogen, carbon monoxide, methane and carbon dioxide) according to modified EPA Method 3C (single injection) using a gas chromatograph equipped with a thermal conductivity detector (TCD). This method is not included on the laboratory's NELAP or AIHA-LAP scope of accreditation.

Hydrogen Sulfide Analysis

The samples were also analyzed for hydrogen sulfide per modified SCAQMD Method 307-91 and ASTM D5504-12 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). This method is not included on the laboratory's NELAP, DoD-ELAP, or AIHALAP scope of accreditation.

Sulfur Analysis

The samples were also analyzed for twenty sulfur compounds per ASTM D 5504-12 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan. This method is not included on the laboratory's NELAP, DoD-ELAP, or AIHA-LAP scope of accreditation.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

Client: Weaver Boos Consultants

Project: Cottonwood Hills RDF Flare Sampling

Service Request No: P1501622

CASE NARRATIVE

Total Gaseous Non-Methane Organics Analysis

The samples were also analyzed for total gaseous non-methane organics according to modified EPA Method 25C. The analyses included a single sample injection (method modification) analyzed by gas chromatography using flame ionization detection/total combustion analysis. This method is not included on the laboratory's NELAP, DoD-ELAP, or AIHA-LAP scope of accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161

F: +1 805 526 7161 www.alsglobal.com

ALS Environmental - Simi Valley

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

ir-		1
Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L14-2
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/labcert.htm	2014025
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	876241
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	4068-001
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 14-5
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01627201 4-4
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client: Weaver Boos Consultants Service Request: P1501622

Project ID: Cottonwood Hills RDF Flare Sampling

Date Received: 4/22/2015 Time Received: 07:30

× TO-3 Modified - C1C6+ Can	X 3C Modified - Fxd Gases Can	× ASTM D5504-01 - H2S Can	ASTM D 5504-12 - Sulfur Can	X 25C Modified - TGNMO+ 1X Can

Client Sample ID	Lab Code	Matrix	Date Collected	Time Collected	Container ID	Pi1 (psig)	Pf1 (psig)	ГО-3 Мос	3C Modifi	ASTM D	ASTM D	5C Modifie	
enent sample is	Вао соас	171441174	Concetta	Concetta	115	(P. 25)	(L~25)	L 1	(1)	7	7	(1	
CWH-1	P1501622-001	Air	4/21/2015	13:01	SSC00343	-3.05	3.86	X	\mathbf{X}	\mathbf{X}	X	X	
CWH-2	P1501622-002	Air	4/21/2015	13:17	SSC00319	-3.17	4.19	X	X	X	X	X	
CWH-3	P1501622-003	Air	4/21/2015	13:33	SSC00114	-3.27	4.50	X	\mathbf{X}	\mathbf{X}	X	X	

ALS

Air - Chain of Custody Record & Analytical Service Request

Page _____ of ___

2655 Park Center Drive, Suite A
Simi Valley, California 93065
Phone (805) 526-7161
Fax (805) 526-7270

Rec

Requested Turnaround Time in Business Days (Surcharges) please circle
1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10-Day-Standard

ALS Project No
PISP 16 22

	Company Name & Address (Reporting Info Weaver Consulto 1604 Eastport Plaza Collinsville, IL	ints Gr	ite 104	-	Project Number	wood Hill Pending		are Sam	pling	ALS Contact Analysi	s Method	
	Project Manager and Limme				P.O. # / Billing Inform			<u> </u>		-	-0	
	Phone (G18) 830-1317	Fax				*		· .		Fied Can	SO4 Ste	Comments
	Email Address for Result Reporting alimmer@wcgr	p.com		11	Sampler (Print & Sign)		- m			Mod V	8. 50	e.g. Actual Preservative or
	Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code # - FC #)	* Canister Start Pressure "Hg	Canister End Pressure "Hg/psig	Sample Volume	25C Modified TGNMO-1x Can 3C Modified Fxd Gases	ASTM D SSOY Sulfor + Has TO-3 Modified	specific instructions
	GWH- 1	0	4.21.15	1301	SSC 00343	S0000088	- 8.4	-	6.0	×	X	-,
	CWH-2	(D)	4.21.15	1317	SSC00319	50480079	- 8.4	o	6.0	X	X	
o l	CWH-3	(3)	4.21.18	1333	5500114	SOACOORIQ	-8.4	,	6.0	X	X	
6 of 25			111	14 (1 1 1					-			3"

						121						
					* *				. 4.			
			-									
-					3.7							
-					Α,							
-	,					≥ y						
-					6		2					
-					4 A1	75.5			ale:			
	Tier I - Results (Default in not specified) Tier II (Results + QC Summaries	Tier III (Results -	please select + QC & Calibration lidation Package)	n Summaries)		EDD required YES Type:	/ No Units:	*	Chain of C	ustody Seal: (C BROKEN A	Sire(c) BSENT	Project Requirements (MRLs, QAPP)
2	Relinquished by: (Signature)	2		Date: 4,21,15	Time: 1530	Received by: (Signature	FED F	'nо	4	Date:	Time:	
L	Reiinquished by: (Signature)	Fign P	20	Date:	Time:	Received by: (Signature		1		4/22/15	10730	Cooler / Blank

Weaver Consultants Group LANDFILL GAS FLARE TESTING LOG

Waste Management, Inc. Cottonwood Hills Recycling and Disposal Facility Marissa, IL

Sampler	Frank Barthol		
Date	4/21/2015		
Sample I.D.	CWH-1		
Vessel I.D.	SSC00343	Flow Controler ID	SOA00088
Vessel Vol.	6.0	liter	
Tomporaturo Mos	ecuromants		
Temperature Mea	Flare Temp.*	1408	Deg. F
	Gas Temp.**	120.49	_ Deg. F
	*Recorded From Flar		_ beg. r
	** Measured with in-	ane thermometer	
Pressure Measure	ment		
	Static Pressure*	3.9	Inches H20
	* Measured with in-li	ine Gauge	
Flow Rate Record			
	Time	1302	990006
	Flow Rate*	1359.2	SCFM
	*Recorded from cont	inuous flowmeter	
	•		
Summa Canister V	_		
	Initial Vacuum	-8.4	Inches Hg
	Final Vacuum		Inches Hg
	Start Time	1301	
	End Time	1316	
			orașii.

Weaver Consultants Group LANDFILL GAS FLARE TESTING LOG

Waste Management, Inc. Cottonwood Hills Recycling and Disposal Facility Marissa, IL

Sampler	Frank Barthol		
Date	4/21/2015		
Sample I.D.	CWH-2		
Vessel I.D.	SSC00319	Flow Controler ID	SOA00079
Vessel Vol.	6.0	liter	WESTAGE LIGHTLE CANADAMENT CANADAMENT PROPERTY OF THE PROPERTY
Temperature Mea	surements		
	Flare Temp.*	1336	_Deg. F
	Gas Temp.**	120.58	Deg. F
	*Recorded From Flar	e Chart Recorder	_
	** Measured with in-	line thermometer	
Pressure Measure	ment		
	Static Pressure*	2.3	Inches H20
	* Measured with in-li	ne Gauge	NA.
Flow Rate Record			
	Time	1318	
	Flow Rate*	1356.2	SCFM
	*Recorded from cont	*****	
Summa Canister V	acuum Readings		
	Initial Vacuum	-8.4	Inches Hg
	Final Vacuum		Inches Hg
			_
	Start Time	1317	
	End Time	1332	
	ena mne	1334	9000

Weaver Consultants Group LANDFILL GAS FLARE TESTING LOG

Waste Management, Inc. Cottonwood Hills Recycling and Disposal Facility Marissa, IL

Sampler	Frank Barthol	•	
Date	4/21/2015		
Sample I.D.	CWH-3	•	
Vessel I.D.	SSC00114	Flow Controler ID	SOA00099
Vessel Vol.	6.0	liter	No. de la constanta de la cons
Tanana anakana hii			
Temperature Mea		1201	D F
	Flare Temp.*	1301	_ Deg. F
	Gas Temp.**	120.9	Deg. F
	*Recorded From Flan		
	** Measured with in	-line thermometer	
Pressure Measure	ment		
	Static Pressure*	2.2	Inches H20
	* Measured with in-l	ine Gauge	
Flow Rate Record			
	Time	1334	Olikieres
	Flow Rate*	1371	SCFM
	*Recorded from cont	tinuous flowmeter	
Summa Canister V	-		
	Initial Vacuum	-8.4	Inches Hg
	Final Vacuum	THE	Inches Hg
	Start Time	1333	
	End Time	1348	and the same

ALS Environmental Sample Acceptance Check Form

Client:	Weaver Boos	Consultants				Work order:	P1501622			
		Hills RDF Flare Samp	ling				-			
_	s) received on:				Date opened:		by:	KKEL		
Note: This f	form is used for all	samples received by ALS.	The use of this fo	orm for custody se	eals is strictly me	eant to indicate pres	ence/absence and n	ot as an ir	dication	of
ompliance	or nonconformity.	Thermal preservation and	pH will only be e	valuated either at t	the request of th	e client and/or as re	quired by the metho	od/SOP. <u>Yes</u>	<u>No</u>	<u>N/A</u>
1	Were sample	containers properly n	narked with cli	ent sample ID	?			X		
2	Container(s) s	upplied by ALS?						X		
3	_	ontainers arrive in goo						X		
4		f-custody papers used						X		
5	Did sample co	ontainer labels and/or	tags agree wi	th custody pap	ers?			X		
6	Was sample v	olume received adequ	ate for analys	is?				×	Д	
7	Are samples w	ithin specified holding	g times?					×		
8	Was proper temperature (thermal preservation) of cooler at receipt adhered to?									X
9	Was a trip bla	ınk received?							X	
10	•								X	
	Location of seal(s)? Sealing Lid?									X
	Were signatur	e and date included?								X
	Were seals int									X
			nple container	-7					X	
	Were custody seals on outside of sample container? Location of seal(s)? Sealing Lid?									×
	Location of seal(s)? Sealing Lid? Were signature and date included?									$\overline{\times}$
Were signature and date included? Were seals intact?										$\overline{\mathbf{x}}$
										×
11		nt indication that the s		-		enent speemee	i imormuuon:			×
	Were VOA v	ials checked for presen	nce/absence of	f air bubbles?						X
		t/method/SOP require			mple pH and	if necessary alto	er it?			X
12	Tubes:	Are the tubes capp	-		inpro pri uno	ii iiooossai j				$\overline{\mathbf{x}}$
		Do they contain m								X
13	Badges:	Are the badges pr		and intact?						×
13	Dauges	Are dual bed badg			y canned and	intact?				\boxtimes
			ges separated a	ina marviauan						
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspac		pt / Pres		
		Description	рН *	pН	рН	(Presence/Absence	e)	Comme	ıts	
P1501622		6.0 L Silonite Can								
P1501622		6.0 L Silonite Can					+			
P1501622	2-003.01	6.0 L Silonite Can					_			
				-						
							1			
Explain	any discrepanc	es: (include lab sample l	D numbers):							
			,							

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-1ALS Project ID: P1501622Client Project ID:Cottonwood Hills RDF Flare SamplingALS Sample ID: P1501622-001

Test Code: ASTM D3588-98

Analyst: Mike Conejo/Nalini Lall Date Collected: 4/21/15 Sample Type: 6.0 L Silonite Canister Date Received: 4/22/15

Test Notes:

Container ID: SSC00343

		Canister Dilution	Factor: 3.47	
Components	Result	Result	Data Qualifier	
	Volume %	Weight %		
Hydrogen	0.57	0.04		
Oxygen + Argon	3.99	4.58		
Nitrogen	16.85	16.91		
Carbon Monoxide	< 0.01	< 0.01		
Methane	45.48	26.14		
Carbon Dioxide	32.95	51.97		
Hydrogen Sulfide	0.08	0.09		
C2 as Ethane	< 0.01	< 0.01		
C3 as Propane	< 0.01	< 0.01		
C4 as n-Butane	< 0.01	< 0.01		
C5 as n-Pentane	< 0.01	0.02		
C6 as n-Hexane	< 0.01	0.02		
> C6 as n-Hexane	0.05	0.21		
TOTALS	99,99	99.99		

33.96 6.66
(((
0.00
42.38
16.91
< 0.10

Specific Gravity (Air = 1)		0.9636	
Specific Volume	ft3/lb	13.60	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	466.9	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	420.4	
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	457.7	
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	412.1	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	6,348.9	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	5,716.8	
Compressibility Factor "Z" (60 F, 14.696 psia)		0.9976	

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-2ALS Project ID: P1501622Client Project ID:Cottonwood Hills RDF Flare SamplingALS Sample ID: P1501622-002

Test Code: ASTM D3588-98

Analyst: Mike Conejo/Nalini Lall Date Collected: 4/21/15 Sample Type: 6.0 L Silonite Canister Date Received: 4/22/15

Test Notes:

Container ID: SSC00319

		Canister Dilution	Factor: 3.61	
Components	Result	Result	Data	
•	Volume %	Weight %	Qualifier	
Hydrogen	0.56	0.04		
Oxygen + Argon	3.83	4.39		
Nitrogen	16.65	16.70		
Carbon Monoxide	< 0.01	< 0.01		
Methane	45.63	26.21		
Carbon Dioxide	33.16	52.26		
Hydrogen Sulfide	0.07	0.09		
C2 as Ethane	< 0.01	< 0.01		
C3 as Propane	< 0.01	< 0.01		
C4 as n-Butane	< 0.01	< 0.01		
C5 as n-Pentane	0.01	0.03		
C6 as n-Hexane	< 0.01	0.02		
> C6 as n-Hexane	0.06	0.24		
TOTALS	99.99	99.99		
Components	Mole %	Weight %		
Carbon	21.33	34.12		
Hydrogen	49.80	6.68		
Oxygen + Argon	19.90	42.40		
Nitrogen	8.96	16.71		
Sulfur	< 0.10	< 0.10		
Specific Gravity (Air = 1)		0.9643		
Specific Volume	ft3/lb	13.59		
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	469.0		
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	422.3		
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	459.7		
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	413.9		
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	6,372.6		
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	5,738.4		
		· · · · · · · · · · · · · · · · · · ·		

Compressibility Factor "Z" (60 F, 14.696 psia)

0.9975

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-3ALS Project ID: P1501622Client Project ID:Cottonwood Hills RDF Flare SamplingALS Sample ID: P1501622-003

Test Code: ASTM D3588-98

Analyst: Mike Conejo/Nalini Lall Date Collected: 4/21/15 Sample Type: 6.0 L Silonite Canister Date Received: 4/22/15

Test Notes:

Container ID: SSC00114

		Canister Dilution Factor: 3.74		
Components	Result	Result	Data	
	Volume %	Weight %	Qualifier	
Hydrogen	0.43	0.03		
Oxygen + Argon	7.31	8.32		
Nitrogen	28.16	28.06		
Carbon Monoxide	< 0.01	< 0.01		
Methane	37.06	21.15		
Carbon Dioxide	26.92	42.14		
Hydrogen Sulfide	0.06	0.07		
C2 as Ethane	< 0.01	< 0.01		
C3 as Propane	< 0.01	< 0.01		
C4 as n-Butane	< 0.01	< 0.01		
C5 as n-Pentane	< 0.01	0.02		
C6 as n-Hexane	< 0.01	0.02		
> C6 as n-Hexane	0.04	0.17		
TOTALS	99.99	99.99		

Components	Mole %	Weight %	
Carbon	18.96	27.50	
Hydrogen	44.26	5.39	
Oxygen + Argon	20.17	38.97	
Nitrogen	16.59	28.07	
Sulfur	< 0.10	< 0.10	

Specific Gravity (Air = 1)		0.9706	
Specific Volume	ft3/lb	13.50	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	380.2	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	342.4	
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	372.9	
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	335.8	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	5,132.9	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	4,621.9	
Compressibility Factor "Z" (60 F, 14.696 psia)		0.9981	

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID: CWH-1 ALS Project ID: P1501622
Client Project ID: Cottonwood Hills RDF Flare Sampling ALS Sample ID: P1501622-001

Test Code: EPA Method 3C Modified Date Collected: 4/21/15
Instrument ID: HP5890 II/GC1/TCD Date Received: 4/22/15
Analyst: Nalini Lall Date Analyzed: 4/26/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

Container ID: SSC00343

Canister Dilution Factor: 3.47

CAS#	Compound	Result	MRL	Data
		%, v/v	%, _V / _V	Qualifier
1333-74-0	Hydrogen	0.566	0.35	
7782-44-7	Oxygen +			
7440-37-1	Argon	4.00	0.35	
7727-37-9	Nitrogen	16.9	0.35	
630-08-0	Carbon Monoxide	ND	0.35	
74-82-8	Methane	45.5	0.35	
124-38-9	Carbon Dioxide	33.0	0.35	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID: CWH-2
Client Project ID: Cottonwood Hills RDF Flare Sampling
ALS Project ID: P1501622
ALS Sample ID: P1501622-002

Test Code: EPA Method 3C Modified Date Collected: 4/21/15
Instrument ID: HP5890 II/GC1/TCD Date Received: 4/22/15
Analyst: Nalini Lall Date Analyzed: 4/26/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

Container ID: SSC00319

Canister Dilution Factor: 3.61

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	0.558	0.36	
7782-44-7	Oxygen +			
7440-37-1	Argon	3.83	0.36	
7727-37-9	Nitrogen	16.7	0.36	
630-08-0	Carbon Monoxide	ND	0.36	
74-82-8	Methane	45.7	0.36	
124-38-9	Carbon Dioxide	33.2	0.36	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID: CWH-3

Client Project ID: Cottonwood Hills RDF Flare Sampling

ALS Project ID: P1501622

ALS Sample ID: P1501622-003

Test Code: EPA Method 3C Modified Date Collected: 4/21/15
Instrument ID: HP5890 II/GC1/TCD Date Received: 4/22/15
Analyst: Nalini Lall Date Analyzed: 4/26/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

Container ID: SSC00114

Canister Dilution Factor: 3.74

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	0.427	0.37	
7782-44-7	Oxygen +			
7440-37-1	Argon	7.32	0.37	
7727-37-9	Nitrogen	28.2	0.37	
630-08-0	Carbon Monoxide	ND	0.37	
74-82-8	Methane	37.1	0.37	
124-38-9	Carbon Dioxide	26.9	0.37	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:Method BlankALS Project ID: P1501622Client Project ID:Cottonwood Hills RDF Flare SamplingALS Sample ID: P150426-MB

Test Code: EPA Method 3C Modified Date Collected: NA
Instrument ID: HP5890 II/GC1/TCD Date Received: NA
Analyst: Nalini Lall Date Analyzed: 4/26/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	ND	0.10	
7782-44-7	Oxygen +			
7440-37-1	Argon	ND	0.10	
7727-37-9	Nitrogen	ND	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
74-82-8	Methane	ND	0.10	
124-38-9	Carbon Dioxide	ND	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE SUMMARY $\mbox{Page 1 of 1}$

Client: Weaver Boos Consultants

Client Sample ID:Lab Control SampleALS Project ID: P1501622Client Project ID:Cottonwood Hills RDF Flare SamplingALS Sample ID: P150426-LCS

Test Code: EPA Method 3C Modified Date Collected: NA
Instrument ID: HP5890 II/GC1/TCD Date Received: NA
Analyst: Nalini Lall Date Analyzed: 4/26/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppmV	ppmV		Limits	Qualifier
1333-74-0	Hydrogen	40,000	42,300	106	83-114	
7782-44-7	Oxygen +					
7440-37-1	Argon	50,000	56,400	113	84-121	
7727-37-9	Nitrogen	50,000	56,900	114	88-122	
630-08-0	Carbon Monoxide	50,000	55,500	111	87-118	
74-82-8	Methane	40,000	43,400	109	85-116	
124-38-9	Carbon Dioxide	50,000	53,500	107	84-117	

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-1ALS Project ID: P1501622Client Project ID:Cottonwood Hills RDF Flare SamplingALS Sample ID: P1501622-001

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type: 6.0 L Silonite Canister

Test Notes:

Container ID: SSC00343

Date Collected: 4/21/15 Time Collected: 13:01 Date Received: 4/22/15 Date Analyzed: 4/24/15 Time Analyzed: 10:41

Volume(s) Analyzed: 0.10 ml(s)

Canister Dilution Factor: 3.47

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	μg/m³	${f ppbV}$	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	1,100,000	240	770,000	170	
463-58-1	Carbonyl Sulfide	3,500	430	1,400	170	
74-93-1	Methyl Mercaptan	17,000	340	8,600	170	
75-08-1	Ethyl Mercaptan	660	440	260	170	
75-18-3	Dimethyl Sulfide	19,000	440	7,300	170	
75-15-0	Carbon Disulfide	2,500	270	810	87	
75-33-2	Isopropyl Mercaptan	9,500	540	3,000	170	
75-66-1	tert-Butyl Mercaptan	ND	640	ND	170	
107-03-9	n-Propyl Mercaptan	ND	540	ND	170	
624-89-5	Ethyl Methyl Sulfide	ND	540	ND	170	
110-02-1	Thiophene	7,300	600	2,100	170	
513-44-0	Isobutyl Mercaptan	ND	640	ND	170	
352-93-2	Diethyl Sulfide	ND	640	ND	170	
109-79-5	n-Butyl Mercaptan	ND	640	ND	170	
624-92-0	Dimethyl Disulfide	ND	330	ND	87	
616-44-4	3-Methylthiophene	ND	700	ND	170	
110-01-0	Tetrahydrothiophene	ND	630	ND	170	
638-02-8	2,5-Dimethylthiophene	ND	800	ND	170	
872-55-9	2-Ethylthiophene	ND	800	ND	170	
110-81-6	Diethyl Disulfide	ND	430	ND	87	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-2ALS Project ID: P1501622Client Project ID:Cottonwood Hills RDF Flare SamplingALS Sample ID: P1501622-002

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

SSC00319

Analyst: Mike Conejo

Sample Type: 6.0 L Silonite Canister

Test Notes: Container ID:

Test Notes:

Date Collected: 4/21/15 Time Collected: 13:17 Date Received: 4/22/15 Date Analyzed: 4/24/15 Time Analyzed: 10:58

Volume(s) Analyzed: 0.10 ml(s)

Canister Dilution Factor: 3.61

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	1,000,000	250	740,000	180	_
463-58-1	Carbonyl Sulfide	3,000	440	1,200	180	
74-93-1	Methyl Mercaptan	17,000	360	8,400	180	
75-08-1	Ethyl Mercaptan	ND	460	ND	180	
75-18-3	Dimethyl Sulfide	17,000	460	6,700	180	
75-15-0	Carbon Disulfide	2,600	280	830	90	
75-33-2	Isopropyl Mercaptan	9,900	560	3,200	180	
75-66-1	tert-Butyl Mercaptan	ND	670	ND	180	
107-03-9	n-Propyl Mercaptan	ND	560	ND	180	
624-89-5	Ethyl Methyl Sulfide	ND	560	ND	180	
110-02-1	Thiophene	8,100	620	2,400	180	
513-44-0	Isobutyl Mercaptan	ND	670	ND	180	
352-93-2	Diethyl Sulfide	ND	670	ND	180	
109-79-5	n-Butyl Mercaptan	ND	670	ND	180	
624-92-0	Dimethyl Disulfide	ND	350	ND	90	
616-44-4	3-Methylthiophene	ND	720	ND	180	
110-01-0	Tetrahydrothiophene	ND	650	ND	180	
638-02-8	2,5-Dimethylthiophene	ND	830	ND	180	
872-55-9	2-Ethylthiophene	ND	830	ND	180	
110-81-6	Diethyl Disulfide	ND	450	ND	90	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID: CWH-3

Client Project ID: Cottonwood Hills RDF Flare Sampling

ALS Project ID: P1501622

ALS Sample ID: P1501622-003

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type: 6.0 L Silonite Canister

Test Notes:

Container ID: SSC00114

Date Collected: 4/21/15 Time Collected: 13:33 Date Received: 4/22/15 Date Analyzed: 4/24/15 Time Analyzed: 11:23

Volume(s) Analyzed: 0.10 ml(s)

Canister Dilution Factor: 3.74

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu \mathrm{g}/\mathrm{m}^3$	μg/m³	${f ppbV}$	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	810,000	260	580,000	190	
463-58-1	Carbonyl Sulfide	2,900	460	1,200	190	
74-93-1	Methyl Mercaptan	13,000	370	6,600	190	
75-08-1	Ethyl Mercaptan	ND	470	ND	190	
75-18-3	Dimethyl Sulfide	13,000	470	5,200	190	
75-15-0	Carbon Disulfide	2,300	290	750	94	
75-33-2	Isopropyl Mercaptan	7,800	580	2,500	190	
75-66-1	tert-Butyl Mercaptan	ND	690	ND	190	
107-03-9	n-Propyl Mercaptan	ND	580	ND	190	
624-89-5	Ethyl Methyl Sulfide	ND	580	ND	190	
110-02-1	Thiophene	5,300	640	1,600	190	
513-44-0	Isobutyl Mercaptan	ND	690	ND	190	
352-93-2	Diethyl Sulfide	ND	690	ND	190	
109-79-5	n-Butyl Mercaptan	ND	690	ND	190	
624-92-0	Dimethyl Disulfide	ND	360	ND	94	
616-44-4	3-Methylthiophene	ND	750	ND	190	
110-01-0	Tetrahydrothiophene	ND	670	ND	190	
638-02-8	2,5-Dimethylthiophene	ND	860	ND	190	
872-55-9	2-Ethylthiophene	ND	860	ND	190	
110-81-6	Diethyl Disulfide	ND	470	ND	94	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:Method BlankALS Project ID: P1501622Client Project ID:Cottonwood Hills RDF Flare SamplingALS Sample ID: P150424-MB

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type: 6.0 L Silonite Canister

Test Notes:

Date Analyzed: 4/24/15 Time Analyzed: 08:14

Volume(s) Analyzed: 1.0 ml(s)

Date Collected: NA

Time Collected: NA

Date Received: NA

CAS#	Compound	Result	MRL	Result ppbV	MRL ppbV	Data Qualifier
7783-06-4	Hydrogen Sulfide	<u>μg/m³</u> ND	μg/m³ 7.0	ND	5.0	Qualifier
	, .				5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND		
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

LABORATORY CONTROL SAMPLE SUMMARY $\mbox{Page 1 of 1}$

Client: Weaver Boos Consultants

Client Sample ID:Lab Control SampleALS Project ID: P1501622Client Project ID:Cottonwood Hills RDF Flare SamplingALS Sample ID: P150424-LCS

Test Code: ASTM D 5504-12 Date Collected: NA
Instrument ID: Agilent 6890A/GC13/SCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 4/24/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppbV	${f ppbV}$		Limits	Qualifier
7783-06-4	Hydrogen Sulfide	1,990	1,720	86	65-138	
463-58-1	Carbonyl Sulfide	2,030	1,690	83	60-135	
74-93-1	Methyl Mercaptan	2,020	1,640	81	57-140	

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Boos Consultants

Client Project ID: Cottonwood Hills RDF Flare Sampling ALS Project ID: P1501622

Total Gaseous Nonmethane Organics (TGNMO) as Methane

Test Code: EPA Method 25C Modified

Instrument ID: HP5890 II/GC1/FID/TCA Date(s) Collected: 4/21/15
Analyst: Wade Henton Date Received: 4/22/15
Sampling Media: 6.0 L Silonite Canister(s) Date Analyzed: 4/23/15

Client Sample ID	ALS Sample ID	Canister Dilution Factor	Injection Volume ml(s)	Result ppmV	MRL ppmV	Data Qualifier
CWH-1	P1501622-001	3.47	0.50	4,200	3.5	
CWH-2	P1501622-002	3.61	0.50	4,700	3.6	
CWH-3	P1501622-003	3.74	0.50	4,800	3.7	
Method Blank	P150423-MB	1.00	0.50	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE SUMMARY $\mbox{Page 1 of 1}$

Client: Weaver Boos Consultants

Client Sample ID:Lab Control SampleALS Project ID: P1501622Client Project ID:Cottonwood Hills RDF Flare SamplingALS Sample ID: P150423-LCS

Test Code: EPA Method 25C Modified Date Collected: NA
Instrument ID: HP5890 II/GC1/FID/TCA Date Received: NA
Analyst: Wade Henton Date Analyzed: 4/23/15

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

				ALS	
Compound	Spike Amount	Result	% Recovery	Acceptance	Data
	ppmV	ppmV		Limits	Qualifier
Total Gaseous Nonmethane Organics (TGNMO) as Methane	99.5	91.9	92	81-119	